ANALYSIS OF HIGHER ORDER THINKING SKILLS CONTENT OF PHYSICS EXAMINATIONS IN MADRASAH ALIYAH

Winarti ¹, Cari ², Widha Sunarno ³, Edi Istiyono ⁴
¹ Doctorate Program on Science Education, Postgraduate Sebelas Maret University, Surakarta, Indonesia, Lecturer of UIN Sunan Kalijaga Yogyakarta
²,³ Doctorate Program on Science Education, Postgraduate Sebelas Maret University, Surakarta, Indonesia
⁴ Physics Education Department, faculty of Mathematics and Natural Sciences Yogyakarta State University
winarti@student.uns.ac.id, ²cari@staff.uns.ac.id, ⁴edi_istiyono@uny.ac.id

ABSTRACT
This research aims to identify Higher Order Thinking Skills content in physics item test given to Madrasah Aliyah students in Yogyakarta. To identify Higher Order Thinking Skill content using dimensions of thinking by Bloom's Taxonomy. These research subjects are daily exams, mid semester exam and final exam on physics. The exams collected are the physics ones at eleven Madrasah Aliyah in Yogyakarta. The data are analyzed with analysis check list of cognitive domain in Revised Bloom taxonomy especially on the Higher Order Thinking Skills. The research result shows that the examinations the students do are merely the memorizing and the formula applications. The data obtained shows that the evaluation exams are given with the level of remembering at 12.7%, understanding at 10.9%, implementing at 69.6% and analyzing at 5.14%. The type of exams for evaluating and creating is rarely and even never used in the examinations to assess the students in Madrasah Aliyah.
Keywords: Physics Examinations, Higher Order Thinking Skills

INTRODUCTION
One aim of education for the 21st Century Skills is to cultivate the problem solving, critical thinking and higher order thinking skills. Higher order thinking skill basically means a thinking that is taking place in the higher levels of the hierarchy of cognitive processing. The most widely accepted hierarchical arrangement of this sort in education is the Bloom Taxonomy, viewing a continuum of thinking skills starting with knowledge-level thinking to evaluation-level of thinking (Ramos, 2013).

According to Resnick (1987), Higher Order Thinking Skill (HOTS) is non-algorithmic, complex, often produces multiple solutions, involves judgment and interpretation, involves the application of several criteria, often involves uncertainty, involves self-regulation in the thinking process, involves the process of finding meaning, and attempts. Stemberg (1995) classifies the high order thinking skills in three categories: meta-component, performance component, and knowledge acquisition component. Meta-component of high order thinking process includes planning, monitoring, decision making, and evaluating. Performance component includes skills used in the actual implementation of the task. Knowledge acquisition component is used in learning the new information. According to Lavonen and Meisalo (1998), being creative and critical thinking, and problem solving are included in the higher-order thinking skills.

According to the National Center for Education Statistics (1996), teaching for HOT along with professional development in HOT were found to be two of the top five variables positively associated with improved student achievement. Students of teachers who teach for both Lower Order Thinking Skill (LOTS) and HOT outperform students whose teachers only teach for LOT. many US state exams primarily focus on (LOTS) (procedural skills; symbol manipulation) at the expense of HOT (problem solving; reasoning) (Thomson, 2012). Lower Order Thinking Skill is often characterized as the recall of information or the application of concept or knowledge to familiar situations and context. Dimension of thinking from
Bloom Taxonomy identifying LOTS consist of three component, namely: remember, understanding and apply. While HOTS level is a complex thinking from analyze, evaluate and create.

The taxonomy classifies cognitive performances into six major headings arranged from simple to complex by revision of the Bloom's taxonomi (Anderson & Krathwohl, 2001): 1) Remember, 2) Understand, 3) Apply, 4) Analyze, 5) Evaluate, 6) Create

Remember involves recognizing or recalling facts and concepts. Understand involves basic comprehension, understood in light of newer theories of learning that emphasize students constructing their own meaning. Processes in this category include interpreting, exemplifying, classifying, summarizing, inferring, comparing, and explaining.

Apply means to execute or implement a procedure to solve a problem. Application level problems still usually have one best answer. Analyze means to break information into its parts, determining how the parts are related to each other and to the overall whole. Processes include differentiating, organizing, and attributing. Multiple correct responses are still likely in analysis level tasks. Evaluate means judging the value of material and methods for given purposes, based on criteria. Processes include checking and critiquing. Create means putting disparate elements together to form a new whole, or reorganizing existing elements to form a new structure. Processes include generating, planning, and producing.

To solve the problem in physics needs to have much deeper thinking process and needs to have analysis process before deciding an issue. The analysis process is a part of HOTS. The ability to think is very important in describing and explaining the physical phenomena of empowerment of Higher Order Thinking Skill in physics learning that can help the students to analyze the meaning of the basic principles and to make decisions in everyday life.

National Assessment of Educational Progress [NAEP] indicate that the US educational system is not preparing students to solve complex problems, or in general, to think at higher levels (Thomson, 2012).

Assessment is an essential part of learning because the assessment is the evidence that a teacher can use to describe the skills of the students throughout the learning process (Holmes, 2002). An assessment may describe the condition of the students. The teacher needs to know the development of the students’ learning in order to ensure that they experience the learning process correctly. If the teacher’s collected data identifies that the students have a blockage in learning, he may soon be able to take appropriate measures so that they can be free from the blockage in learning. An assessment may facilitate the development of Higher Order Thinking Skills of the students. They are forced to think of solving the problems to find the answers of the examinations that they do. With the development of test item physics for examinations that assess higher order thinking skill is key to facilitating the development of HOT by all students.

Danovan Peterson (1992) states that the assessment the teachers do all this time is merely mathematical and logarithmic without trying to develop the higher order thinking skills on the students. Therefore, it is important to know how the assessment done so far. The purpose of this research is to determine whether the physics examinations used to assess the students in madrasah aliyah already contain the higher order thinking skills.

METHODS

The population in this research is all Madrasah Aliyah in Yogyakarta City, Bantul Regency and Sleman Regency either the public or private schools. The sample selection technique is random sampling. The samples in this research are eleven Madrasah Aliyah.

Data collection technique in this study is a non-test technique. The non-test technique is conducted to obtain the data of the examinations that have been used by teachers to assess the students. The methods used in this research are the documentation and interviews. The data analysis technique used is the analysis of qualitative data. The qualitative analysis is conducted through a review of the examinations used to determine the suitability of the examinations in the test with the indicator of higher order thinking skill that have been arranged previously.
RESULT AND EXPLANATION

The frequency of using the dimension of HOTS is found based on the data analysis that is classified by the bloom taxonomy as follows.

Table 2
Classification of thinking aspect of the physics tests

<table>
<thead>
<tr>
<th>Thinking Skill Assigned by Bloom Taxonomy for the Physics Examinations</th>
<th>Analysis Result (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remembering</td>
<td>12.7 %</td>
</tr>
<tr>
<td>Understanding</td>
<td>10.9 %</td>
</tr>
<tr>
<td>Applying</td>
<td>69.9 %</td>
</tr>
<tr>
<td>Analyzing</td>
<td>5.14 %</td>
</tr>
<tr>
<td>Evaluating</td>
<td>0 %</td>
</tr>
<tr>
<td>Creating</td>
<td>0 %</td>
</tr>
</tbody>
</table>

Of the six thinking aspect classified by Bloom, there are only four thinking skills used: Remembering, Understanding, Applying and Analyzing. The analysis result for the remembering skill on the physics examinations used in Madrasah Aliyah is at 12.7%. The understanding skill is 10.9%, the applying skill is 69.9%, while the evaluating skill and creating skill are 0%. The examinations that have been used all this time contain no Higher Order Thinking Skills because there are no examinations that measure the skills of evaluating and creating. Most of the examinations lie on the LOT. The physics examinations mostly only ask the students to apply the physics formula.

Many researches identifying the level of HOT evidently show that the examinations used in the high schools are at the low order thinking skill (Lane, 2004; Webb, 2002). Other researches in mathematics conducted by Tony Thomson (2012) show that the math examinations used is at the low order thinking. Similarly, in this research the analysis result of the physics examinations used in Madrasah Aliyah shows the low order thinking.

Table 3
Sample of test items classified by Taksonomi Bloom

<table>
<thead>
<tr>
<th>Bloom’s Taksonomi Classifications</th>
<th>Test Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remembering</td>
<td>Explain the principle of Black</td>
</tr>
<tr>
<td>Remembering</td>
<td>Absolute Zero temperature is the temperature when</td>
</tr>
<tr>
<td>Remembering</td>
<td>Explain the transfer of heat!</td>
</tr>
<tr>
<td>Applying</td>
<td>Temperature of a body is 40 °C. What is the temperature if it measured with a thermometer Reamur and fahrenheit?</td>
</tr>
<tr>
<td>Applying</td>
<td>Ice mass of 150 grams and a temperature of 0 °C included in 500 grams of water with temperature 20 °C. If the heat melting ice 80 cal/g, the specific heat of water 1 cal/g, then the final temperature of the mixture is.....</td>
</tr>
<tr>
<td>Applying</td>
<td>How much heat is needed to melt the ice as 200 grams with a temperature of 0 °C? (latent heat of fusion of water 80 cal/g)</td>
</tr>
</tbody>
</table>
Physics test item at the level of LOTS is a usual solution likely to be routine and familiar to students and do not involve a new situation or require a student to solve a problem. Physics test item of classification that are identified on LOTS is on the domain remembering, understanding and applying.

As can be seen from table 3, it was not unusual for physics examination to classify the same or similar test items as both LOTS (remembering, understanding, and applying) and HOTS (analyzing, evaluating, and creating)

Remember and understand is part of LOTS. Remembering level is when teachers ask their students to answer questions correctly and fundamentally. At the level of this measure a person’s ability to think in defines, describes, identifies, knows, embed, made the list, match, name, describe, recall and recognize.

Physics test item at the level of LOTS is a usual solution likely to be routine and familiar to students and do not involve a new situation or require a student to solve a problem. Physics test item of classification that are identified on LOTS is on the domain remembering, understanding and applying.

According to Bloom, test items that had already been practiced in class would be labeled remember and understanding. The following table includes examples of test items considered by the researcher

<table>
<thead>
<tr>
<th>Explain the principle of Black Absolute Zero temperature is the temperature when Explain the transfer of heat</th>
</tr>
</thead>
</table>

The main key to execute the question is if students remember the definition of the matter they choose have a best answer.

Apply skill is the ability to use a procedure to resolve the issue. The application skill consists of two cognitive processes: the executing skill and implementing skills. In executing skill is if students encounter problems that are already known to the students will be awareness which procedure will be used. This skill is more inclined to the ability to solve problems with the algorithmic

Ice mass of 150 grams and a temperature of 0°C included in 500 grams of water with temperature 20°C. If the heat melting ice 80 cal/g, then the specific heat of water 1 cal/g, then the final temperature of the mixture is.....

From that question is so obvious that the skills needed to solve the problems is to logarithmic. Step problem solving with this type is to know the symbols that have been recognized by students and use the equation. If each step is done correctly, the results to be obtained is also certainly true.

One of the characteristic of HOT in is its newness to the solver or its non routine nature. However many of the test items for examination in madrasah alyiah were procedural and routine is Lower Order Thinking Skill.

Application level is a level that requires students to solve problems in new situations by applying knowledge, facts, techniques and rules in a different way. Application level is when the teacher asks students to solve problems using formulas or specific strategy when the issue has not been shown before. This is different to memorize or reiterating a fact and apply it to something new. For example, when students have to calculate how temperature somewhere by using a thermometer. To resolve this problem, the learners have to think how to use the scale and shall apply the scale reading skills so that they can resolve the issue. Some keywords and phrases that are used when learning at the level of application that includes is apply, build, choose, construct, develop, interview, make use of, organize, experiment with, plan, select, solve, modifies, predicts, produces, changes, identify, and model

Analysis described as the level of thinking that asks students to examine and decipher each piece of information by identifying the reasons or causes, to make conclusions and find facts to support broader conclusions. Some keywords used to the level of analysis that is analyze, categorize, classify, compare, contrast, discover, dissect, divide, examine, inspect, simplify, survey, take part in, test for, distinguish, distinction, relationships, function, motive, inference, assumption, and conclusion.
For analyze skill students required to able:

1. Analyze information, divide and structuring information into smaller parts to identify patterns or relationships.
2. Being able to recognize and distinguish between the causes and consequences of a complicated scenario.
3. Indentifying or formulate questions

According (Brookhart, 2010) to assess the quality of students’ thinking as they break down information into its parts and reason with that information, questions or tasks must ask students to find or describe those parts and figure out how they are related. Analysis level questions present students with material (or ask them to locate material), then ask questions or present problems whose answers require differentiating or organizing the parts in some reasonable manner. Explaining the reasoning used to relate the parts to one another is often part of the analysis task.

Bloom defined that evaluating is judging the value of material and methods for given purposes, based on criteria. Processes include checking and critiquing, evaluating as assessing the reasonableness and quality of ideas; creating standards for making judgments; confirming the accuracy of claims. For the evaluating skill student must have analyze skill to claim the solution.

According (Brochart, 2010) to assess evaluation, you need items or tasks that can assess how students judge the value of materials and methods for their intended purposes. Students can appraise the material against criteria.

REFERENCES

Bloom defined that evaluating is judging the value of material and methods for given purposes, based on criteria. Processes include checking and critiquing, evaluating as assessing the reasonableness and quality of ideas; creating standards for making judgments; confirming the accuracy of claims. For the evaluating skill student must have analyze skill to claim the solution.

According (Brochart, 2010) to assess evaluation, you need items or tasks that can assess how students judge the value of materials and methods for their intended purposes. Students can appraise the material against criteria.

REFERENCES

