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ABSTRACT 

 

Feynman’s derivation of Schrodinger Equation (SE) shows how Dirac’s expression is equivalent, even if seemingly 

approximate, with SE.[1] This equivalence may be made exact even when extended to E^3. In this article we prove this 

equivalence for simple case when the Lagrangian is simply the difference between kinetic and potential energy. 
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INTRODUCTION 

 

 

 

Feynman’s formulation of path integral makes 

use of equivalence between Dirac’s integral equation and 

Schrodinger’s partial differential equation. However 

Dirac didn’t recover SE from his equation, it was 

Feynman who did
[1][2]

. Feynman recovered SE by setting �exp	���/
� as quantum mechanical wave propagator. 

He at first set the propagator to equal exp	���/
� then 

expanding out everything in power series, making the 

lowest order approximation, he found out that he needed 

to adjust a proportionality constant to make its left and 

right hand side equal. This derivation made heavy uses of 

approximation, thus it may seem to be an approximate 

equality. This equality however, is actually an exact 

equality. In this article we’ll provide an exact 

mathematical derivation of 3 dimensional SE, and one 

dimensional case follows easily. In deriving SE, only 

basic assumptions are made, and in doing so we have 

avoid as much as possible approximation steps. All 

approximate equalities in the last step then are turned 

exact by a limiting procedure. The derivation itself 

follows roughly Feynman’s lead, minus the physical 

intuition features to appeal mathematical rigor. 

 

Quantum Mechanical Wave Function Propagator 

 

Huygens’ principle proposed by Christiaan 

Huygens in 1678 stated that every point reached by 

luminous disturbance may become source for secondary 

waves, which is commonly called wavelets, the form of 

these secondary waves determines the form of the 

primary wave at later time. Mathematically it takes the 

form of 

�
��
, �
� � ������, ����� 

 
Figure 1 

 

Where �
 and �� is as indicated in above figure and the 

integration is to be taken over the surface C. Thus, �
 

only contains information about disturbance along 

surface C. To get complete information about the shape 

of wave function we integrate over the whole space. The 

idea of propagator of wave function is that there exists a 

function ���
 , �� , �
, ��� called the kernel or propagator of 

wave function such that �
��
, �
� � ����
, ��, �
, ����
���, ������� 
Or ���
, ��, �
, ����
���, ��� � �����, ��� 

The propagator as �� → �
, exhibits a certain 

property of Dirac delta function. To show this we simply 

evaluate the limit when �� → �
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�
��
, �
� � ����
, ��, �
, ����
���, �
����� 
Which by definition we know that for arbitrary � < � <� we have  ��� � � � ×  �"��"	#

$  � � %�" − �� 
Later in the derivation we’ll find that our quantum 

mechanical wave propagator reduces to Dirac delta. 

The propagator of quantum mechanical wave 

function is found to be proportional to '()���/
� by 

Feynman
[1][2]

 after reading a paper by Dirac. 

 

Approximating Propagator and Finding 

Proportionality Constant 

 

From Feynman’s own derivation
[1][2][3]

 we know 

that the propagator of quantum mechanical wave 

function is proportional to '()���/
� as is found by 

Feynman. In the simplest case the Lagrangian is simply 

the difference between kinetic and potential energy. * � 12-.��� ∙ .��� − 0������ 
Thus for small time interval 1 � �2 − �3 � � � *��45

46 ≈ *$891 � �:$89 − 0$89�1 

:$89 � 12- �; − <� ∙ �; − <�12  

0$89 � 0�12 �< + ;�� 
With ; and < defined as ; � � .	��45

> � ���2� 
< � � .	��46

> � ���3� 
or � ≈ -21 �; − <� ∙ �< − ;� − 10�12 �< + ;�� 

We note that as 1 tends to 0, the approximate 

equalities will become exact equalities. To show this, we 

know that Lagrangian is a function that depends on time �. *��� � :�.���� − 0������ 
By mean value theorem, we know that there exists �? 

such that for �3 < �? < �2 we have @ *�����4546�2 − �3 � *��?� 
Invoking another mean value theorem, :$89  then can be 

expressed as :$89 � 12- �; − <� ∙ �; − <�12 � 12-.8 ∙ .8 

Where component of .8 are defined such that for each 

components AB  and (B of ; and < there exists some �8,B 
with �3 < �8,B < �2, s.t. 

AB − (B�2 − �3 � @ CB���	��4546�2 − �3 � CB��8,B� 
Or to be explicit CB��8,B�’s are components of .8. 

We can express 
32 �< + ;� � D, assuming 

component EB of D lies in between components AB and (B 
of ; and < as well as  the continuity of ���� within �3 ≤ � ≤ �2, then by intermediate value theorem for each 

components EB of D we have for some �G,B  with �3 <�G,B < �2, EB � �B��G,B� 
Then substituting back we have � � � *��45

46 � *��?�1
� H12-.��?� ∙ .��?� − 0����?��I 1 

*$891 � H12-.8 ∙ .8 − 0�D�I 1 

Now taking the limit as �2 → �3, and by squeeze theorem 

we have for each �8,B’s and �G,B’s �3 � �8,B � �? � �G,B � �2 

Thus, *$891 → � as 1 � �2 − �3 → 0. 

The approximation also applies to velocity 

dependent potential, though our derivation involves only 

position-only dependent potential. 

Plugging *$891 as approximation for the action 

we have ��<, ;� � �	'() K��
L≈ '() K �-2
1 �;− <�2L exp M− �
 10 N12 �< + ;�OP 

Wherein � is undetermined constant to be fitted into the 

equation. Plugging back into the integral equation, while 

setting �3 � �, yields Ψ�<, � + 1� ≈ ��	'() K �-2
1 �;− <�2L exp M− �
 10 N12 �< + ;�OP× Ψ�;, ����A 

As 1 tends to 0 we want the above approximate 

equality to turn into an exact equality. The second 

exponential will fall off to 1. Then by suitably choosing 

proportionality constant � we have Ψ�<, � + 1� ≈ ��	'() K �-2
1 ∑�AS − (S�2L × Ψ�;, ����A 

From Gaussian integral we know of @ exp�−T(2� �(UVU � WXY. Thus, the proportionality 

constant, to make the right and left hand side equals as 1 → 0, is required to be 

� � Z -2[�
1\�2 



International Conference on Mathematics, Science, and Education 2015 (ICMSE 2015) 

P - 61 

 

But we also know of a Dirac delta 

representation %�(� � lim`→> 3√2XB` exp	�BG52` �. That is the 

proportionality constant turns our propagator into a 

representation of Dirac delta as 1 → 0. Thus, the 

propagator function indeed reduce to Dirac delta as 1 � �2 − �3 → 0. Hence, as 1 → 0, we have 

Ψ�<, �� � � 	bc%�AS − (S�d�
Se3 × Ψ�;, ����A 

Computationally it means that we only need to 

integrate over a small neighborhood of < to know how 

the wave function behaves in short time 1. 

 

Expansion and Helpful Identities 

 

From here on, we’ll derive Schrodinger 

Equation following roughly Feynman’s
[3]

 leads. 

Starting with 

Ψ�<, � + 1� ≈ ��	bH'() K �-2
1 �AS
�
Se3− (S�2LI exp M− �
 10 N12 �< + ;�OP

× Ψ�;, ����A 

Use substitution f � ; − <, to get 

Ψ�<, � + 1� ≈ ��	bH'() K �-2
1 gS2LI
�
Se3 exp N− �
 10 K<

+ f2LO × Ψ�< + f, ����g 

Expanding everything out
[4]

, except '() Z B?2
h gS2\ factor, 

like what Feynman did gives i ≔ − �
 10 K< + f2L 

'()�i� � 1 + i + i22! + i�3! + ⋯ 

0 K< + f2L � n1 + opgS2 qq(S
�
Se3 r + 12! opgS2 qq(S

�
Se3 r2 +⋯

+ 1s!opgS2 qq(S
�
Se3 rt +⋯u0�<� 

Ψ�< + f, �� � n1 + opgS qq(S
�
Se3 r + 12! opgS qq(S

�
Se3 r2

+⋯+ 1s! opgS qq(S
�
Se3 rt +⋯uΨ�<, �� 

We know of Gaussian integral 

� exp�−T(2� �(U
VU � v[T 

Using Feynman’s favorite, differentiating under the 

integral sign gives 

� (2exp�−T(2� �(U
VU � 12Tv[T 

Differentiating T n times we have 

� �−(2�t exp�−T(2� �(U
VU � qtqTtv[T 

qtqTtv[T � K−12L K−32L K−52L… K−2s − 12 L√[TV2ty32
� K−12Lt �2s − 1�‼√[	TV2ty32  

� �(2�t exp�−T(2� �(U
VU � 12t �2s − 1�‼√[	TV2ty32  

For s > 0, where we have defined "‼ � 1 × 3 × 5 × …×" as double factorial. 

Other identities which will be of uses are � �|��	}~s���|s��(U
VU � 0 �|��	}~s���|s� × �'C's	}~s���|s�� �|��	}~s���|s� 

 

We have a formula for trinomial expansion �� + � + ��t �p s!�! �! �! �B�S��B,S,�  

While � + � + � � s 

With above identities it’s possible to evaluate every 

terms of 

Ψ�<, � + 1� ≈ ��	bH'() K �-2
1 gS2LI
�
Se3× N1 + i + i22! + i�3! + ⋯O× Ψ�< + f, ����g 

Derivation 

 

To ease our calculation we’ll state it beforehand 

that we’ll divide both sides of the integral equation by 1, 

and take the limit 1 → 0, making any nonlinear terms of 1 in the '()�i� factor dies off. So, we have 

Ψ�<, � + 1� ≈ ��	bH'() K �-2
1 gS2LI
�
Se3× �Ψ�< + f, �� + iΨ�< + f, �����g 

To get more picture on what’s happening inside each 

terms we will write out expanded form of the equation. 

First, we redefine some terms to avoid notational mess. 

�t � 1s! opgS qq(S
�
Se3 rtΨ�<, �� 

�
 � 1)! opgS qq(S
�
Se3 r
Ψ�<, �� 
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�� � 1|! opgS2 qq(S
�
Se3 r� 0�<� 

With above notations we have 

Ψ�< + f, �� � p�tU
te> �p�
U


e>  

i � − �
 10 K< + f2L � − �
 1p��U
�e>  

Hence the integral equation may be expressed as 

Ψ�<, � + 1� ≈ ��	bH'() K �-2
1 gS2LI
�
Se3 × Mp�tU

te> P��g
− �
 1 ��	bH'() K �-2
1 gS2LI

�
Se3

× Mp��U
�e> Pop�
U


e> r��g 

Notice how each terms with odd s in the first 

integral term all have odd power with respect to one or 

more of three variables. Because only odd+even equals 

odd, implying one (or more) of the variables have odd 

power(s) whenever n is odd. Thus making the integrand 

odd function with respect to that variable(s), hence 

making them vanishes when evaluated. Similarly, each 

terms of the 2
nd

 integral may be expressed as terms of �∑gS���∑gS�
, for each terms having odd | + ), all of 

the expanded terms have odd power with respect to one 

or more variables. Thus, we only need to evaluate terms 

having even s and even | + ) and drop the odd terms. 

Also any terms in the sum having odd power with respect 

to one or more variables will automatically vanishes 

when evaluated, reducing further the number of terms 

needed to be evaluated. 

Yet for further ease of the calculation, we state 

it again that in the last step of the derivation we’ll divide 

both side of the integral equation by 1 and take the limit 1 → 0. We know that only terms having at most 1�/2 will 

survive, since � contributes 1V�/2	 and again 1V3 from 

the final step. From Gaussian integral we know that only 

terms having �@ exp�−Tg2� �gUVU �� or �@ exp�−Tg2� �gUVU �2 × @ ζ2exp�−Tg2� �gUVU  will 

survives, since they contributes TV�/2	 and TV�/2 or 1�/2 

and 1�/2 respectively. 

Now having enough information about quite a 

few of simplifications that may be made, let’s start 

calculating the first few terms that we know won’t 

vanish. 

Lowest order of first integral term (n=0) 

��	bH'() K �-2
1 gS2LI
�
Se3 Ψ�<, ����g � Ψ�<, �� 

1
st
 order of the first integral vanishes (n=1) 

2
nd

 order of first integral term (n=2) 

12��	bH'() K �-2
1 gS2LI
�
Se3 pgS2 q2q(S2

�
Se3 Ψ�<, ����g

� �
12-pq2Ψ�<, ��q(S2
�
Se3 � �
12-∇2Ψ�<, �� 

The mixed derivative terms of n=2 are odd function with 

respect to 2 variables thus vanishes (though only 1 

needed to make them vanishes). 

Lowest order of the second integral (o=p=0) 

− �1
 0�<���	bH'() K �-2
1 gS2LI
�
Se3 Ψ�<, ����g
� − �1
 0�<�Ψ�<, �� 

Higher order terms of the two integrals have 

nonlinear factor of 1 when evaluated, thus vanishes in the 

final step, hence gathering terms we obtain Ψ�<, � + 1� ≈ Ψ�<, �� − �1
 0�<�Ψ�<, �� + �
12-∇2Ψ 

Multiplying by �
 for both sides and rearranging we have �
Ψ�<, � + 1� − Ψ�<, ��1 ≈ 0�<�Ψ�<, �� − 
22-∇2Ψ 

Taking as 1 → 0 it is exactly the (time-dependent) 

Schrodinger Equation �
 qΨq� � N−
22- ∇2 + 0OΨ 

All of previous approximate equalities turned 

into exact equalities since we have made it such that each 

of above equalities turn exact upon only one condition, 

that is limiting 1 → 0. Hence stating that propagator 

function of quantum mechanical wave function is equal 

to �	exp���/
�, with suitably chosen constant �, makes 

it equivalent with Schrodinger’s Equation, with the 

former being integral equation and the later differential 

equation. 
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